全息原理是“一个系统原则上可以由它的边界上的一些自由度完全描述”,是基于黑洞的量子性质提出的一个新的基本原理。其实这个基本原理是联系量子元 和量子位结合的量子论的。其数学证明是,时空有多少维,就有多少量子元;有多少量子元,就有多少量子位。它们一起组成类似矩阵的时空有限集,即它们的排列 组合集。全息不全,是说选排列数,选空集与选全排列,有对偶性。即一定维数时空的全息性完全等价于少一个量子位的排列数全息性;这类似“量子避错编码原 理”,从根本上解决了量子计算中的编码错误造成的系统计算误差问题。而时空的量子计算,类似生物DNA的双螺旋结构的双共轭编码,它是把实与虚、正与负双 共轭编码组织在一起的量子计算机。这可叫做“生物时空学”,这其中的“熵”,也类似“宏观的熵”,不但指混乱程度,也指一个范围。时间指不指一个范围?从 “源于生活”来说,应该指。因此,所有的位置和时间都是范围。位置“熵”为面积“熵”,时间“熵”为热力学箭头“熵”。其次,类似N数量子元和N数量子位 的二元排列,与N数行和N数列的行列式或矩阵类似的二元排列,其中有一个不相同,是行列式或矩阵比N数量子元和N数量子位的二元排列少了一个量子位,这是 否类似全息原理,N数量子元和N数量子位的二元排列是一个可积系统,它的任何动力学都可以用低一个量子位类似N数行和N数列的行列式或矩阵的场论来描述 呢?数学上也许是可以证明或探究的。

1、反德西特空间,即为点、线、面内空间,是可积的,因为点、线、面内空间与点、线、面外空间交接处 趋于“超零”或“零点能”零,到这里是一个可积系统,它的任何动力学都可以有一个低一维的场论来实现。也就是说,由于反德西特空间的对称性,点、线、面内 空间场论中的对称性,要大于原来点、线、面外空间的洛仑兹对称性,这个比较大一些的对称群叫做共形对称群。当然这能通过改变反德西特空间内部的几何来消除 这个对称性,从而使得等价的场论没有共形对称性。这可叫新共形共形。如果把马德西纳空间看作“点外空间”,一般“点外空间”或“点内空间”也可看作类似球 体空间。反德西特空间,即“点内空间”是场论中的一种特殊的极限。“点内空间”的经典引力与量子涨落效应,其弦论的计算很复杂,计算只能在一个极限下作 出。例如上面类似反德西特空间的宇宙质量轨道圆的暴涨速率,是光速的8.88倍,就是在一个极限下作出的。在这类极限下,“点内空间”过渡到一个新的时 空,或叫做pp波背景,可精确地计算宇宙弦的多个态的谱,反映到对偶的场论中,我们可获得物质族质量谱计算中一些算子的反常标度指数。

2、 这个技巧是,弦并不是由有限个球量子微单元组成的。要得到通常意义下的弦,必须取环量子弦论极限,在这个极限下,长度不趋于零,每条由线旋耦合成环量子的 弦可分到微单元10的-33次方厘米,而使微单元的数目不是趋于无限大,从而使得弦本身对应的物理量如能量动量是有限的。在场论的算子构造中,如果要得到 pp波背景下的弦态,我们恰好需要取这个极限。这样,微单元模型是一个普适的构造,也清楚了。在pp波这个特殊的背景之下,对应的场论描述也是一个可积系 统。

全息照相的拍摄要求

为了拍出一张满意的全息照片,拍摄系统必须具备以下要求:

(1) 光源必须是相干光源

通过前面分析知道,全息照相是根据光的干涉原理,所以要求光源必须具有很好的相干性。激光的出现,为全息照相提供了一个理想的光源。这是因为激光具有很好的空间相干性和时间相干性,实验中采用He-Ne激光器,用其拍摄较小的漫散物体,可获得良好的全息图。

(2) 全息照相系统要具有稳定性

由 于全息底片上记录的是干涉条纹,而且是又细又密的干涉条纹,所以在照相过程中极小的干扰都会引起干涉条纹的模糊,甚至使干涉条纹无法记录。比如,拍摄过程 中若底片位移一个微米,则条纹就分辨不清,为此,要求全息实验台是防震的。全息台上的所有光学器件都用磁性材料牢固地吸在工作台面钢板上。另外,气流通过 光路,声波干扰以及温度变化都会引起周围空气密度的变化。因此,在曝光时应该禁止大声喧哗,不能随意走动,保证整个实验室绝对安静。我们的经验是,各组都 调好光路后,同学们离开实验台,稳定一分钟后,再在同一时间内爆光,得到较好的效果。

(3) 物光与参考光应满足

物 光和参考光的光程差应尽量小,两束光的光程相等最好,最多不能超过2cm,调光路时用细绳量好;两速光之间的夹角要在30°~60°之间,最好在45°左 右,因为夹角小,干涉条纹就稀,这样对系统的稳定性和感光材料分辨率的要求较低;两束光的光强比要适当,一般要求在1∶1~1∶10之间都可以,光强比用 硅光电池测出。

(4) 使用高分辨率的全息底片

因为全息照相底片上记录的是又细又密的干涉条纹,所以需要高分辨率的感光材料。普通照相用的感光底片由于银化物的颗粒较粗,每毫米只能记录50~100个条纹,天津感光胶片厂生产的I型全息干板,其分辨率可达每毫米3?000条,能满足全息照相的要求。

(5) 全息照片的冲洗过程

冲 洗过程也是很关键的。我们按照配方要求配药,配出显影液、停影液、定影液和漂白液。上述几种药方都要求用蒸馏水配制,但实验证明,用纯净的自来水配制,也 获得成功。冲洗过程要在暗室进行,药液千万不能见光,保持在室温20℃在右进行冲洗,配制一次药液保管得当可使用一个月左右。

全息照相的应用

综 上所述,全息照相是一种不用普通光学成象系统的录象方法,是六十年代发展起来的一种立体摄影和波阵面再现的新技术。由于全息照相能够把物体表面发出的全部 信息(即光波的振幅和相位)记录下来,并能完全再现被摄物体光波的全部信息,因此,全息技术在生产实践和科学研究领域中有着广泛的应用〔2,3〕。例如: 全息电影和全息电视,全息储存、全息显示及全息防伪商标等。

除光学全息外,还发展了红外、微波和超声全息技术,这些全息技术在军事侦察和 监视上有重要意义。我们知道,一般的雷达只能探测到目标方位、距离等,而全息照相则能给出目标的立体形象,这对于及时识别飞机、舰艇等有很大作用。因此, 备受人们的重视。但是由于可见光在大气或水中传播时衰减很快,在不良的气候下甚至于无法进行工作。为克服这个困难发展出红外、微波及超声全息技术,即用相 干的红外光、微波及超声波拍摄全息照片,然后用可见光再现物象,这种全息技术与普通全息技术的原理相同。技术的关键是寻找灵敏记录的介质及合适的再现方 法。

超声全息照相能再现潜伏于水下物体的三维图样,因此可用来进行水下侦察和监视。如图(3)。由于对可见光不透明的物体,往往对超声波透明,因此超声全息可用于水下的军事行动,也可用于医疗透视以及工业无损检测测等。

附二:什么是全息技术?

    全息技术是实现真实的三维图像的记录和再现的技术。该图像称作全息图。和其他三维“图像”不一样的是,全息图提供了“视差”。视差的存在使得观察者可以通过前后、左右和上下移动来观察图像的不同形象——好像有个真实的物体在那里一样。

    全息技术是伦敦大学帝国理工学院的Dennis Gabor博士发明的。他也因此而获得了1971年的诺贝尔物理学奖。最初,Gabor博士只是希望提高扫描电子显微镜的解析度。上世纪60年代初期,密 歇根大学的研究员Leith和Upatnieks制作出世界上第一组三维全息图像。这段时间,前苏联的Yuri Dennisyuk也开始尝试制作可以用普通白光观看的全息图。现在,全息技术的持续发展为我们提供了越来越精确的三维图像。

附三:全息摄影技术浅谈

   全息摄影又称全像摄影(Holography),是光学上极富诱惑的一项技术。我们都有这样的体会,洒在马路的油膜在阳光下会呈现出多种色彩,而在吹起 的肥皂泡上也会看到同样的情况,原因是由于肥皂泡两个面的反射光出现了干涉,称光的薄膜干涉现象。光是摄影的生命,而光有很多的特性,如色散和散射,有经 验的摄影师可以充分利用这些现象变有害为有利,从而为作品添加一些新奇的效果。照相机镜头是由多组透镜合成的,为避免光在透镜表面的反射损失,人们发明出 镜头的镀膜技术,使一定波长的光在反射时相互抵消,以增加进入镜头的光线使成像更清晰。同样,人们利用光波的干涉特性研究出了具有立体效果的全息摄影技 术。全息摄影曾一度是科学家进行科研的专利技术,现在普通人经过一定的学习也可以掌握了,如普遍用于信用卡或图书封面的仿伪卡,那是一种立体显像的东西, 在阳光下显示着五光十色的反射光。

“全息”这一词我们会感想到很熟悉,联想到耳针中的人体全息图。人耳是人体的一个缩影,上面对应人体各个器官,从这里人们进一步研究出人体的任何一局部都有整个身体的信息,所以称全息图,了解这点对全息摄影也就容易理解了。

全息摄影与普通摄影的区别

类 别 全息摄影 一般摄影
记录方式 物束光与参考光束 光学镜头成像(物束光)
记录内容 物体散射光的强度及相位信息 景物本身或反射光强度
成像介质 记录后称全息片(全灰色调) 感光胶片
影像观察方式 一般借助激光还原观看 眼睛直接观看
色彩表现 彩色干涉条纹图像 彩色物体图像
影像特点 三度空间立体感的景物,只有散射光线而并无实物 平面物体图像

一、 什么是光的干涉现象

在物理课的力学中我们做过水波的干涉实验,而根据光的波动特性,人们也成功地观察到了光波的干涉与衍射现象。为得到频率相同的二条光线,让光从一个狭缝 中同时射向第二屏的两个小孔,两束光在屏后出现了干涉条纹,条纹的出现是因为二束光的波峰与波谷会由于叠加时(同相)光加强,相互抵消时(反相)光减弱。 这一现象使美国麻省理工学院的物理学家Stephen Benton发现其后面隐藏着一项高科技,从而对这项技术做出进一步的研究。

二、 全息图像的特点

有关全息的原理在1947年就已由英国物理学家丹尼斯伽柏提出了,科学家本人也因此获得了诺贝尔奖。在全息影像拍摄时,记录下光波本身以及二束光相对的 位相,位相是由实物(图中蓝色光线)与参考光线(图中红色光线)之间位置差异造成的,从全息照片上的干涉条纹上我们看不到物体的成像,必须使用具有凝聚力 的激光来准确瞄准目标照射全息片,从而再现出物光的全部信息。一个叫班顿的人后来又发现了更为简便使用白光还原影像的方法,从而使这项技术逐渐走向实用阶 段。美国《国家地理杂志》第一次使用白色光全息片贴在封面时,销售量由一千万份增加到再版后的一千六百万份。这一技术后由美国传到欧洲和其它国家,广泛用 于信用卡等仿伪技术。激光全息摄影技术也随之风靡全世界。

全息摄影是利用激光光波的干涉将影像与再现影像记录下来的一种摄影,它与一般的立体照片技术完全不同,我们可以围着它观看各个侧面,只是摸不到真实的物体,其显著的特点和优势有如下几点:

1、 再造出来的立体影像有利于保存珍贵的艺术品资料进行收藏。

2、 拍摄时每一点都记录在全息片的任何一点上,一旦照片损坏也关系不大。

  3、 全息照片的景物立体感强,形象逼真,借助激光器可以在各种展览会上进行展示,会得到非常好的效果。

附四:数字全息技术

数 字全息技术是建立在数字计算机和现代光学的基础上的一门新技术学科。它告诉我们什么是真正的3D物体的信息处理技术,计算机3D图像处理技术和它有什么不 同。它告诉我们物体的3D空间图像信息是怎样在2D计算机中处理、记录和再现的。当激光器坏了时,又要做全息图像,在这样的情况下,我们能够用计算机代替 激光器制作全息图像。我们会发现数字全息图比激光全息图有许多优点,但也有一些缺点,它取决于全息图像的应用的目的。在这门课程中,首先,介绍全息技术的 发展过程,其次,介绍光学全息技术理论原理和制作方法,再次,从通信工程理论的角度介绍数字全息技术的基础理论,并介绍各种数字全息技术的制作方法和类 型,重点讲述Lohmann型和干涉型两种数字全息技术制作原理和方法。最后,举例介绍数字全息技术在光学信息处理、干涉量度和制作数字全息光学元件中的 应用等。

附五:数字全息技术为硅圆片把关

nLine公 司试图用数字全息摄影技术来检查又窄又深的空间,如半导体圆片上的接触点和沟道电容器等。此类问题一直被列为业界最难解决的技术问题之一,nLine声称 它的技术提供了解决之道。普通的模拟全息摄影技术需要胶片。被nLine称之为直接数字化的全息摄影技术用CCD照相机记录光学全息图,并通过计算机接口 直接将全息图存到硬盘上,而且计算机显示器可以立即将图像显示出来。这种数字全息摄影技术可用来检测小于深紫外光波长的缺陷。过去两年中,nLine的解 决方案已经吸引了大约3500万美元的投资。

附六:调制光束全息技术

调 制光束全息术是一种以光调制理论为基础的新全息技术,是一种独特、新颖、复杂的光测力学新技术。该全息技术提出的测试理论、方法和设计的光路系统可解决较 宽松环境和设备条件下任意形状表面物体的三维位移矢量场的正确测定问题,可以解决其它全息技术所不能解决的技术问题。该成果以激光全息干涉测试系统的光学 元件的随机位移对记录光束进行调制,并以辅助物体全息法对调制全息图再现的调制全息干涉图进行解调,导出了相关定量计算公式,从而能正确解出整个被测物体 表面的位移矢量场、调制量的大小等物理量。定量分析精度可达3%左右。

附七:全息技术应用于大学物理教学

全 息的意义是记录物光波的全部信息。自从20世纪60年代激光出现以来得到了全面的发展和广泛的应用。它包含全息照相和全息干涉计量两大内容。 全息照相的种类很多,按一定分类法有:同轴全息图、离轴全息图、菲涅耳全息图和傅里叶变换全息图等等。 本实验主要包括两项基本全息照相实验: (一)全息光栅:可以看成基元全息图,当参考光波和物光波都是点光源且与全息干板对称放置时可以在干板上形成平行直条纹图形,采用线性曝光可以得到正弦振 幅型全息光栅。 (二)三维全息:通过干涉将漫反射物体的三维信息记录在全息干板上,再通过原光路衍射得到与原物体完全相似的物光波。 本实验的意义是让学生通过这两个实验,掌握全息照相的基本技术,更深刻地认识光的相干条件的物理意义,初步了解全息术的基本理论。 全息光栅光路图 全息照相光路图 教学重点 1. 使学生学会全息照相的干涉记录和衍射再现的技术手段。 2. 使学生较深刻理解全息照相的本质。 3. 使学生了解全息照相的应用。 教学难点 1. 拍摄高质量的全息图的技术关键。 2. 全息图的衍射效率。 自测题 1. (1)全息照相通过条纹的对比度记录了物体的强度分布信息。 (2)全息照相通过条纹的深浅记录了物体的强度分布信息。 2. (1)拍摄物体的三维全息图时分束板的透过率为50% (2)拍摄物体的三维全息图时分束板的透过率为5%。 3. 在拍摄全息图时所用的扩束镜为 (1)长焦距透镜 (2)短焦距透镜。 4. 如果全息图被打坏了,取一小块再现看到 (1)不完整的像 (2)较小的像。 思考题 1. 用细激光束垂直照射拍好的全息光栅,如能在垂直的白墙上看到五个亮点,说明什么问题? 2. 如果想拍摄一个100线/mm的全息光栅应如何布置光路? 3. 怎样测量全息光栅的衍射效率? 4. 为什么拍摄物体的三维全息图要求干板的分辨率在1500线/mm以上?

附八:全息技术的原理及应用

也称”全息摄影”。一种可把被摄物反射的光波中的全部信息记录下来的新型照相技术。1948年、英籍匈牙利科学家加博尔提出并证实了全息照相原理。1960年发现激光,提供了良好的相干光源使全息照相获得飞速发展和广泛应用。1971年,加博尔为此获诺贝尔物理学奖。

全息照相和常规照相不同,在底片上记录的不是三维物体的平面图像,而是光场本身。常规照相只记录了反映被报物体表面光强的变化,即只记录的光的振幅,全息照相则记录光波的全部信息,除振幅外还忘记录了光波的们相。即把三维物体光波场的全部信息都贮存在记录介质中。

全 息照相是一种无透镜的两步成像。原理是:利用物光和参考光干涉在感光胶片上记录一幅干涉图样,呈错综复杂、透明度不同的花纹,称为全息(即全息照片),相 当于把胶片制成一不规则的光栅,然后利用全息图对适当照明光的衍射,把原三维影像提取出来。后一过程称为重现。全息图是一个天然的信息存储器,可把”冻 结”了的景物重新”复活”在人们眼前。由于这一独特性能全息图有极其广泛的应用。如用于研究火箭飞行的冲击波、飞机机翼蜂窝结构的无损检验等。现在不仅有 激光全息,而且研究成功白光全息、彩虹全息,以及全景彩虹全息,使人们能看到景物的各个侧面。全息三维立体显示正在向全息彩色立体电视和电影的方向发展。

除用光波产生全息图外,已发展到可用计算机产生全息图。全息图用途很广,可作成各种薄膜型光学元件,如各种透镜、光栅、滤波器等,可在空间重叠,十分紧凑、轻巧,适合于宇宙飞行使用。使用全息图贮存资料,具有容量大、易提取、抗污损等优点。

全息照相的方法从光学领域推广到其他领域。如微波全息、声全息等得到很大发展,成功地应用在工业医疗等方面。地震波、电子波、X射线等方面的全息也正在深入研究中。

    博视界科技专注于沉浸式全景数字餐厅、全息酒店宴会厅,旨在帮传统餐饮用科技玩跨界,欢迎咨询!

官方网站:www.boseetech.com

联系方式:    

微信联系我:


    【声明】转载本文请注明出处三人行设计,并保留有效链接:去伪存真,再次解读真全息技术 http://www.srxtuan.com/archives/823,谢谢!

猜您还喜欢: